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Knowledge Base Refinement as Improving an

Incorrect and Incomplete Domain Theory

David C. Wilkins

Department of Computer Science
University of Illinois
405 North Mathews Ave
Urbana, IL 61801

Abstract

The ODYSSEUS program automates knowledge-base refinement by improving a do-
main theory. This paper describes the techniques used by ODYSSEUS to address three types
of domain theory pathologies: incorrectness, inconsistency, and incompleteness.

In ODYSSEUS, an incomplete domain theory is extended by the metarule chain com-
pletion method. This method exploits the use of an explicit metalevel representation of the
strategy knowledge for a generic problem class (e.g., heuristic classification) that is sepa-
rate from the domain theory (e.g., medicine) to be improved. Our work implements and
compares the extension of an incomplete domain theory using case-based inductive learning
and explanation-based apprenticeship learning; in the latter, learning occurs by completing
failed explanations of observed human problem-solving actions. Extending an incomplete
domain theory and correcting an incorrect domain theory both use the confirmation deci-
sion procedure method, which validates arbitrary instantiated tuples of the knowledge base
by the use of an underlying domain theory. Lastly, the consistency of the knowledge base
is improved by use of the sociopathic reduction algorithm.
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1 Introduction

A central problem of expert systems is knowledge-base refinement (Buchanan and Shortliffe,
1984). Numerous research efforts have addressed the problem of improving an expert system
that solves heuristic classification problems. The major research projects that have directly
confronted this problem include the interactive semi-automatic approaches of TEIRESIAS
(Davis, 1982), AQUINAS (Boose, 1984), and MORE (Kahn et al., 1985). They also include the
automatic case-based inductive methods of INDUCE (Michalski et al., 1983), ID3 (Quinlan,
1983), SEEK2 (Ginsberg et al., 1985), and RL (Fu and Buchanan, 1985), which perform
empirical induction over a library of test cases. This chapter describes a new approach
to the refinement problem that involves a combination of failure-driven explanation-based
learning and the use of underlying domain theories. Our approach is embodied in the
ODYSSEUS learning prograin; ODYSSEUS contains specific (and separate) methods to address
automatically three types of knowledge base pathologies: incorrectness, inconsistency, and

incompleteness (Wilkins, 1987).

The remainder of this paper is organized as follows: Section 1.2 describes the MINERVA
expert system shell that was specifically designed to facilitate failure-driven explanation-
based learning. Our experience has shown that a sophisticated expert system architecture
can provide an enormous amount of leverage to a learning program. Section 1.3 describes
the apprenticeship learning methods used by ODYSSEUS to extend an incomplete domain
thecty; the key idea used to extend an incomplete domain theory is called the metarule
chain completion method. Section 1.4 describes the methods used by ODYSSEUS to correct
an incorrect domain theory; our approach to dealing with an incorrect domain theory is
called the confirmation decision procedure method. Section 1.5 discusses the method used
to remove certain types of inconsistencies from a correct but inconsistent domain theory;
this m=thod is called the sociopathic reduction algorithm. Section 1.6 presents results of a
wide range of evaiuation experiments that have been carried out, and Section 1.7 describes

related research.

2 MINERVA Classification and Design Shell

The ODYSSEUS learning program can improve any knowledge base crafted for the MIN-
ERVA expert system shell; its overall organization is shown in Figure 1 (Park et al., 1989).
MINERVA is a refinement of HERACLES, based on the experience gained in creating the ODY-
SSEUS apprenticeship learning program for HERACLES (Wilkins, 1987). HERACLES is itself
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a refinement of EMYCIN, based on the experience gained in creating the GUIDON case-based
tutoring program for EMYCIN (Clancey, 1986). These shells use a problem-solving method
called heuristic classification, which is the process of selecting a solution out of a preenu-
merated solution set, using heuristic techniques (Clancey, 1985). The primary application
knowledge base for MINERVA and HERACLES is the NEOMYCIN medical knowledge base
for diagnosis of meningitis and similar neurological disorders (Clancey, 1984). This section
describes the types of knowledge encoded in MINERVA and HERACLES, and how MINERVA
differs from HERACLES.

Meta-Interpreter ATMS

Inference Engine

Scheduler Metarules

Opportunistic Blackboard Scheduler

Heuristic Classification VLSI Hierarchical Design
Metarules Metarules

Meta-Level Strategy Knowledge

Domain || Domain || Derived || Dynamic
Rules Facts Facts Facts

Declarative Domain Knowledge

Figure 1: MINERVA System Architecture.

Domain knowledge consists of MYCIN-like rules and simple frame knowledge for an
application domain such as medicine or geology. An example of rule knowledge in Horn
clause format is conclude(migraine-headache, yes, .5) :- finding(photophobia, yes), meaning
‘to conclude the patient has a migraine headache with a certainty .5, determine if the
patient has photophobia.’” An example of frame knowledge is subsumed-by(viral-meningitis,

meningitis), meaning ‘hypothesis viral meningitis is subsumed by the hypothesis meningitis.’
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Problem-state knowledge is generated during execution of the expert system. Examples of
problem- state knowledge are rule-applied(rule163), which says that rule 163 has been applied
during this consultation, and differential(migraine-headache, tension-headache), which says
that the expert system’s active hypotheses are migraine headache and tension headache.

Strateqy knowledge is contained in the shell, and it approximates a cognitive model
of problem solving. For heuristic classification problems, this model is often referred to as
hypothesis-directed reasoning (Elstein et al., 1978). The different problem-solving strategies
that can be employed during problem solving are explicitly represented, which facilitates
use of the model to follow the line of reasoning of a human problem solver. The strategy
knowledge determines what domain knowledge is relevant at any given time, and what
additional information is needed to solve the problem. The problem-state and domain
knowledge, including rules, are represented as tuples; and strategy metarules are quantified

over these tuples.

The strategy knowledge needs to access the domain and problem-state knowledge.
To achieve this, the domain and problem-state knowledge is represented as tuples. Even
rules are translated into tuples. For example, if rule 160 is conclude(hemorrhage yes .5) :-
finding(diplopia yes) A finding(aphasia yes), it would be translated into the following four
tuples: evidence.for(diplopia hemorrhage rule160 .5), evidence.for(aphasia hemorrhage rule-
160 .5), antecedent(diplopia rule160), antecedent(aphasia, rule160). Strategy metarules are
quantified over the tuples. Figure 4 presents four strategy metarules in Horn clause form;
the tuples in the body of the clause quantify over the domain and problem-state knowledge.
The rightmost metarule in Figure 4 encodes the strategy to find out about a symptom by
finding out about a symptom that subsumes it. The metarule applies when the goal is to
find out symptom P1, and there is a symptom P2 that is subsumed by P1, and P2 takes
Boolean values, and it is currently unknown, and P2 should be asked about instead of being
derived from first principles. This is one of eight strategies in HERACLES that is also used
in MINERVA for finding out the value of a symptom; this particular strategy of asking a
more general question has the advantage of cognitive economy: a ‘no’ answer provides the

answer to a potentially large number of questions, including the subsumed question.

2.1 The Evolution from Heracles to Minerva

MINERVA is a reworking of HERACLES, similar to the way that HERACLES is a reworking
of EMYCIN. The ultimate objective in both these efforts has been a more declarative and
modular representation of knowledge. This facilitates construction of a learning program to
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examine and reason about the knowledge structures of the metalevel strategy in the expert
system, to interpret better a user’s strategy in terms of the metalevel strategy knowledge
in the expert system, and to allow the same shell to encode strategy knowledge for the
generic problem tasks of analysis (e.g., heuristic classification) and synthesis (e.g., VLSI

circuit design).

There are four principal differences between MINERVA and HERACLES at the strategy
level. In determining which task to perform next, HERACLES uses a fixed order goal tree;
by contrast MINERVA employs an opportunistic blackboard scheduler. This facilitates in-
terpreting a user’s strategy in terms of the expert system'’s strategiss, and better integrates
top-down and bottom-up strategic reasoning. Second, in controlling metalevel reasoning,
HERACLES uses dynamic control flags and variables, such as task end conditions. In MIN-
ERVA, a pure functional programming style and a deliberation-action loop have been used;
this eliminates all flags and variables at the strategy level. So in MINERVA, the system
state is completely determined by domain-level static and dynamic knowledge. Third, in
HERACLES, strategy metarule premises sometimes change the state of the system, invoke
subgoals, and use procedural attachment to LISP code; and HERACLES strategy metarule
actions can invoke several goals. In contrast, MINERVA metarules do not follow any of
these practices, which allows a pure deliberation-action cycle for strategic reasoning. The
MINERVA style of metarules reduces side effects, thus making it easier for the learning pro-
gram to reason about the strategy knowledge. Fourth, in MINERVA, more of the meta-level
code in the expert system, such as the rule interpreter code, has been encoded in strategy

metarules.

Other changes are as follows: The MINERVA system is completely implemented in
PROLOG; by contrast, HERACLES uses a combination of PROLOG-like clauses with proce-
dural attachment to LISP for each of the PROLOG clause predicates in metarules. The
more uniform representation in MINERVA moves us toward our long-term goal of allowing
a learning program to reason about all knowledge structures in the expert system shell.
MINERVA incorporates an ATMS to maintain consistency of the knowledge base, uses a logic
metainterpreter, and supports both certainty factors and Pearl’s method to represent rule
certainty and for propagation of information in a hierarchy of diagnostic hypotheses (Pearl,
1986b; Pearl, 1986a). As can be seen, all of the changes that mentioned have resulted in a

more declarative and functional knowledge representation.
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3 Odysseus’s Method for Extending an Incomplete Domain
Theory

We have developed two methods for extending an incomplete domain theory: an apprentice-
ship learning approach and a case-based reasoning approach. This section will only describe
the former approach. Table 1 shows the major refinement steps and the method of achieving
them for apprenticeship and case-based learning. The techniques will be elaborated below.

The solution approach of the ODYSSEUS apprenticeship program for extending an
incomplete domain theory in a learning-by-watching scenario is illustrated in Figure 2. As
Figure 2 shows, the learning process involves three distinct steps: detect domain theory
deficiency, suggest domain theory repair, and validate domain theory repair. This section
defines the concept of an explanation and then describes the three learning steps.

The main observable problem-solving activity in a diagnostic session is finding out
values of features of the artifact to be diagnosed—we refer to this activity as asking findout
questions. An ezplanation in ODYSSEUS is a proof that demonstrates how an expert’s find-
out question is a logical consequence of the current problem state, the domain and strategy
knowledge, and one of the current high-level strategy goals. An explanation is created by
backchaining the metalevel strategy metarules; Figure 4 provides examples of these meta-
rules represented in Horn clause form. The backchaining starts with the findout metarule
and continues until a metarule is reached whose head represents a high-level problem-solving

Learning Case-Based Learning Apprenticeship Learning
Method (similarity-based) (explanation-based)
Scope Heuristic rules. Heuristic rules.
4 types of frame knowledge.
Detect KB Select and run a case. Observe expert solving a case.
deficiency Deficiency exists if Deficiency exists if action of
case is misdiagnosed. expert cannot be explained.
Suggest KB | Generalize or specialize Find tuples that allow
repair rules. Induce new rules. explanations to be completed
under single fault assumption.
Validate KB | Use underlying domain Use underlying domain theory
repair theory to validate repairs. | to validate repaits.

Table 1: Comparison of case-based and apprenticeship learning method for extending an incomplete
domain theory.
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goal. To backchain a metarule requires unification of the body of the Horn clause with do-

main and problem-state knowledge. Examples of high-level goals are: to test a hypothesis,

to differentiate between several plausible hypotheses, to ask a clarifying question, and to

ask a general question.

Apprenticeship learning is a form of learning by watching, in which learning occurs as

a by-product of building explanations of human problem-solving actions. An apprenticeship

is the most powerful method that human experts use to refine and debug their expertise in

knowledge-intensive domains such as medicine. The major accomplishment of our method of

apprenticeship learning is a demonstration of how an explicit representation of the strategy

4

Detect
Domain Theory
Deficiency

_r
'
Suggest

Domain Theory
Repair

b

4
Evaluate
Domain Theory

Repair

Observe
Human Action

|

Generate
Explanations

Bxplanation
Pound?

LNO

Conjecture Knowledge
That Completes
an Explanation

l

New Knowledge
Justified?

L Yes

Modify Application
Domain Theory

Meta.-Level
Stretegy Knowledge

Application
Domain Theory

Confirmation
—

Unaderlying
Domain Theory

Figure 2: Overview of Odysseus’ method for extending an incomplete domain theory in a learning-
by-watching apprentice situation. This paper describes techniques that permit automation of each
of the three stages of learning shown on the left edge of the figure. An explanation is a proof that
shows how the expert's action achieves a problem-solving goal.
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knowledge for a general problem class, such as diagnosis, can provide a basis for learning

the knowledge that is specific to a particular domain, such as medicine.

3.1 Detection of Knowledge Base Deficiency

The first stage of learning involves the detection of a knowledge base deficiency. An ex-
pert’s problem solving is observed and explanations are constructed for each of the observed
problem-solving actions. An example will be used to illustrate our description of the three
stages of learning, based on the NEOMYCIN knowledge base for diagnosing neurology prob-
lems. The input to ODYSSEUS is the problem-solving behavior of a physician, John Sotos, as
shown in Figure 3. In our terminology, Dr. Sotos asks findout questions and concludes with
a final diagnosis. For each of his actions, ODYSSEUS generates one or more explanations of

his behavior.

When ODYSSEUS observes the expert asking a findout question, such as asking if the

patient has visual problems, it finds all explanations for this action. When none can be

Patient's Complaint and Volunteered Information:
1. Alice Ecila, a 41 year old black female.
2. Chief complaint is 8 headache.
Physician's Data Requests:
3. Headache duration?
focus=tension headache. 7 days.
4. Headache episodic?
focus=tension headache. No.
5. Headache severity?
focus=tension headache. 4 on 0-4 scale.
6. Visual problems?
focus=subarachnoid hemorrhage. Yes.
7. Double vision?
focus=subarachnoid hemorrhage, tumor. Yes.
8. Temperature?
focus=infectious process. 98.7 Fahrenheit.
Physician's Final Diagnosis:
25. Migraine Headache.

Figure 3: An example of what the Odysseus apprentice learner sees. The data requests in this
problem-solving protocol were made by John Sotos, M.D. The physician also provides information
on the focus of the data requests. The answers to the data requests were obtained from an actual
patient file from the Stanford University Hospital, extracted by Edward Herskovits, M.D.
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found, an explanation failure occurs. This failure suggests that there is a difference between
the knowledge of the expert and the expert system and it provides a learning opportunity.
The knowledge difference may lie in any of the three types of knowledge that we have
described: strategy knowledge, domain knowledge, or problem state knowledge. Currently,
ODYSSEUS assiumes that the cause of the explanation failure is that the domain knowledge is
deficient. In the current example, no explanation can be found for findout question number

7 in figure 3 (asking about visual problems), and an explanation failure occurs.

3.2 Suggesting a Knowledge Base Repair

The second step of apprenticeship learning is to conjecture a knowledge base repair. A
confirmation theory (which will be described in the discussion of the third stage of learning)
can judge whether an arbitrary tuple of domain knowledge is erroneous, independent of the

other knowledge in the knowledge base.
The search for the missing knowledge begins with the single fault assumption. It

should be noted that the missing knowledge is described conceptually as a single fault, but

because of the way the knowledge is encoded, we can learn more than one tuple when we

Findout

Group Hypotheses
Strategy Metarule

goal(group-hyp(H1,H2))
:~ differential(H1),
taxonomic(H1}.
parent(H2,H1),

not pursued(H2),
closest-common-
ancestor(H2,H1),
not{root(H2)},
goal(test-hyp(H2)).

Test Hypothesis
Strategy Metarule

goal(test-hyp(H2)) :-
concluded-by(H1,R1),
not(pursued(ril)),
inpremise(P1 R1),
goal(applyrule(R1)).

Applyrule
Strategy Metarule

goal(applyrule(R1)) :-
not{rule.applied(R1)),
inpremise(P1,R1),
evid-for(P1,H2,R1.S1),
soft-datum(P1),
not(concluded(P1)),
goal(findout(P1)),

applyrule-forward(R1).

Strategy Metarule

goal(findout(P1)) :-
subsumes(P2,P1),
not(concluded(P1)),
boolean(P2),
not{concluded(P2}),
ask-user(P1).

Figure 4: Learning by completing failed explanations. The illustrated strategy-level Horn clause
metarules can chain together to form an explanation of how the the findout action of ask-user(P1)
relates to the high-level goal of group-hypoth(H1,H2). In this particular case, all the tuples in the
chain cannot be instantiated with domain knowledge. Odysseus’ attempts to complete this and
other failed explanation chains by adding domain knowledge to the knowledge base so that all the
tuples unify.
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learn rule knowledge. For ease of presentation, this feature is not shown in the following

examples.

Conceptually, the missing knowledge could be eventually identified by adding a ran-
dom domain knowledge tuple to the knowledge base and seeing whether an explanation
of the expert’s findout request can be constructed. How can a promising piece of such
knowledge be effectively found? Our approach is to apply backward chaining to the findout
question metarule, trying to const.uct a proof that explains why it was asked. When the
proof fails, it is because a tuple of domain or problem-state knowledge needed for the proof
is not in the knowledge base. If the proof fails because of problem-state knowledge, we
look for a different proof of the findout question. If thLe proof fails because of a missing
piece of domain knowledge, we temporarily add this tuple to the domain knowledge base.
If the proof then goes through, the temporary piece of knowledge is our conjecture of how

to refine the knowledge base.

Figure 4 illustrates one member of the set of failed explanations that ODYSSEUS exam-
ines in connection with the unexplained action, ask-user(visual problems), that is contained
in the tail of the rightmost metarule. These strategy metarules create a chain between the
high-level goal in the head of the leftmost metarule, group-hypotheses(Hypothesisl, Hypothe-
sis2) and the low-level observable action in the tail of the rightmost metarule ask-user(visual
problems). Note that this chain is but one path is a large explanation graph that connects
the observable action of asking about visual problems to all high-level goals. Each path
in the graph is a potential explanation, and each node in a path is a strategy metarule.
The failed explanation that ODYSSEUS is examining consists of the four metarules shown in
Figure 4: Group Hypotheses, Test Hypothesis, Applyrule, and Findout. For a metarule to
be used in a proof, its variables must be instantiated with domain or problem state tuples
that are present in the knowledge base. In this example, the evidence.for tuple is responsi-
ble for the highlighted chain not forming a proof. It forms an acceptable proof if the tuple
evidence.for(photophobia acute.meningitis $rule $cf) or evidence.for(diplopia acute.meningitis
$rule $cf) is added to the knowledge base. During the step that generates repairs, neither
the form of the left-hand side of the rule (e.g., number of conjuncts) or the strength is
known. In the step to evaluate repairs, the exact form of the rule is produced in the process

of evaluation of the worth of the tuple.
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3.3 Validation of Knowledge Base Repair

The task of the third step of apprenticeship learning is to evaluate the proposed repair. To
do this, we use the confirmation decision procedure {(CDP) method. CDPs are constructed for
each type of tuple in the domain theory, and can determine if the tuple is an acceptable tuple.
Of the 19 different types of tuples in the Neomycin knowledge base, we have implemented
CDPs for three of them: evidence.for, clarifying.question, and ask.general.question tuples. In
addition to their use for validating knowledge base repairs, CDPs are also used to modify
or delete incorrect parts of the initial domain theory; they are described in greater detail

in Section 4.

Evidence.for tuples were generated in the visual problems example. In order to confirm
the first candidate tuple, ODYSSEUS uses an empirical induction system that generates
and evaluates rules that have photophobia in their premise and acute meningitis in their
conclusion. A rule is found that passes the rule ‘goodness’ measures, and it is automatically
added to the object-level knowledge base. All the tuples that are associated with the rule
are also added to the knowledge base. This completes our example.

The CDP method also validates frame-like knowledge. An example of how this is
accomplished will be described for clarify question tuples, such as clarify.questions(head-
ache-duration headache). This tuple means that if the physician discovers that the patient
has a headache, she should always ask how long the headache has lasted. The confirmation
theory must determine whether headache duration is a good clarifying question for the
‘headache’ symptom. To achieve this, ODYSSEUS first checks to see if the question to be
clarified is related to many hypotheses (the ODYSSEUS explanation generator allows it to
determine this), and then tests whether the clarifying question can potentially eliminate a
high percentage of these hypotheses. If these two criteria are met, then the clarify questions

tuple is accepted.

4 Odysseus’s Method for Improving an Incorrect Domain

Theory

The main focus of this chapter is on extending an incomplete domain theory via apprentice-
ship learning. However, it is clearly helpful if we are extending a domain theory that is
correct and consistent. This section describes the methods that we have developed to im-

prove the correctness of the domain theory. These methods are applied to the domain
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theory prior to the use of apprenticeship learning.

The key to addressing the problem of incorrect knowledge is the use of the confir-
mation decision procedure ( CDP) method, which connects tuples in the domain theory to
underlying theories of the domain that are capable of judging their correctness. In this
approach, a CDP is created for each type of domain theory tuple in the knowledge base.
Given an arbitrary instantiated tuple, the CDP calculates whether the tuple is true or false.

In some cases the CDP can suggest how the tuple can be modified so as to make it true,

Of the 19 different types of domain theory tuples in che NEOMYCIN domain theory,
we have created CDP’s for three types of tuples. Theses tuples comprise approximately
70% of all tuples in the domain theory. For example, a CDP has been implemented for
evidence.for tuples. These tuples are derived from the heuristic domain rules provided by a
user that relate evidence to hypotheses. Validating evidence.for tuples therefore consists of

validating the heuristic associational rules in the knowledge base.

The CDP for evidence.for consists of an induction system, a set of rule biases, and
a representative case library for the application domain. It accepts or rejects heuristic
rules, whether they are rules in the initial knowledge base or rules conjectured during
apprenticeship learning. In addition to accepting or rejecting rules, the CDP for evidence.for
can modify a given rule to make it correct; it does this by adding conjuncts or modifying
the rule strength. A rule can be modified to be “correct” by using probability and decision
theory and representative sets of cases to to determine its correct weight or strength (in
contrast to trusting the weight provided by the user). If a rule lacks sufficient strength, the
CDP will try to add conjuncts to the rule to increase its specificity.

When given an evidence.for tuple, its corresponding heuristic associational rule, which
is indicated by the third argument of the evidence.for relation, is tested in five ways by the
evidence.for CDP. A test for rule simplicity ensures that the number of antecedent conditions
of the rules are less than the specified number. The test for strength accepts rules whose
certainty factors (CF) are greater than a threshold value. The third bias is to test the
generality of the rules. It succeeds only if the rules cover a certain percentage of the cases
in a representative case library. The test for colinearity ensures that the proposed rules are
not similar to any existing rules in performing classification of the induction set of cases.
Finally the bias for uniqueness will check that the rules fire on a training case and there
exist no rules in the current domain rule set that also succeed for that case. Good rules
are those recommendations that pass the verification process. This rule may then be added

into the system.
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It is often difficult to create CDPs for some types of tuples in the domain theory. For
example, consider the tuple type askfirst(Parm). This tuple says that a particular feature
of the system being diagnosed should be obtained from a user instead of derived from
first-principles. It is difficult to imagine how to do this for an arbitrary feature, although
eventually a way must be found if knowledge acquisition is to be completely automated.

Note that most knowledge bases are much more heterogeneous than LEAP, a learn-
ing apprentice for acquiring a domain theory that consists of VLSI circuit implementation
rules. In this system, the domain theory only contains implementation rules (in our par-
lance, only contains one type of domain tuple). LEAP can verify the implementation rules
using Kirkhoff’s laws as its underlying domain theory. The challenge of using this idea
for knowledge-base systems is that most domain theories contain many different types of

domain knowledge, not just one type as in LEAP.

The CDPs were originally constructed to validate repairs during apprenticeship learn-
ing. However, they nicely allow the initial knowledge base to be validated prior to apprentice-
ship learning. As will be reported in Section 1.6, about half of the existing knowledge base
is modified during the processing stage that focuses on ensuring that the domain theory

contains correct knowledge.

5 Odysseus’s Method for Improving an Inconsistent Do-

main Theory

A processing stage prior to apprenticeship learning also removes a form of inconsistent
knowledge from the domain theory, which is responsible for deterioration of the performance
of the system due to sociopathic interactions between elements of the domain theory. A
domain theory is sociopathic if and only if (1) all the rules in the knowledge base individ-
ually meet some “goodness” criteria; and (2) a subset of ‘he knowledge base gives better
performance than the original knowledge base. The five biases described in Section 1.4

provide an example of goodness criteria for heuristic rules in the domain theory.

The significance of the phenomena of sociopathicity is as follows. First, most extant
expert systems have sociopathic knowledge bases. Second, traditional methods to correct
missing and wrong rules, e.g., the general TEIRESIAS approach (Davis, 1982), cannot handle
the problem. Third, sociopathicity imposes a limit on the quality of knowledge base perfor-
mance. And last, it implies that some kind of global refinement for the acquired knowledge
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is essential for machine learning systems.

The phenomena of sociopathicity is addressed at length in another paper, wherein
we show that the best method for dealing with this form of inconsistency is to find a subset
of the original domain theory that is not sociopathic (which must exist by our definition of
sociopathicity). A summary of our results are as follows: The process of finding an optimal
subset of a sociopathic knowledge base is modeled as a bipartite graph minimization problem
and shown to be NP-hard. A heuristic method, the sociopathic reduction algorithm, has
been developed to find a suboptimal solution for sociopathic domain theories. The heuristic
method has been experimentally shown to give good results.

6 Related Research

6.1 Odysseus and Explanation-Based Learning

The ODYSSEUS apprenticeship learning method involves the construction of explanations,
but it is different from explanation-based learning as formulated in EBG (Mitchell et al.,
1986) and EBL (DeJong, 1986); it is also different from explanation-based learning in LEAP
(Mitchell et al., 1989), even though LEAP also focuses on the problem of improving a
knowledge-based expert system. In EBG, EBL, and LEAP, the domain theory is capable of
explaining a training instance, and learning occurs by generalizing an explanation of the
training instance. In contrast, in our apprenticeship research, a learning opportunity occurs
when the domain theory, which is the domain knowledge base, is incapable of producing an
explanation of a training instance. The domain theory is incomplete or erroneous, and all

learning occurs by making an improvement to this domain theory.

6.2 Case-Based versus Apprenticeship Learning

In empirical induction from cases, a training instance consists of an unordered set of feature-
value pairs for an entire diagnostic session and the correct diagnosis. In contrast, a training
instance in apprenticeship learning is a single feature-value pair given within the context of
a problem-solving session. This training instance is therefore more fine-grained, can exploit
the information implicit in the order in which the diagnostician collects information, and
allows obtaining many training instances from a single diagnostic session. Our apprentice-

ship learning program attempts to construct an explanation of each training instance; an
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explanation failure occurs if none is found. The apprenticeship program then conjectures
and tests modifications to the knowledge base that allow an explanation to be constructed.
If an acceptable modification is found, the knowledge base is altered accordingly. This is a

form of learning by completing failed explanations.

The case-based learning approach currently modifies or adds heuristic rules to the
knowledge base. It runs all the cases in the library and locates those that are misdiagnosed.
Given a misdiagnosed case, the local credit assignment problem is solved as follows: The
premises of the rules that concluded the wrong final diagnosis are weakened by specializa-
tion, and the premises of the rules that concluded the correct diagnosis are strengthened. If
this does not solve the problem, new rules will be induced from the patient case library that
apply to the misdiagnosed case and that conclude the correct final diagnosis. The verifica-
tion procedure used to test all knowledge base modifications is identical to that described

for apprenticeship learning.

7 Experimental Results

Our knowledge-acquisition experiments centered on improving the ProHCD shell containing
the NEOMYCIN knowledge base for diagnosing neurology problems. The initial NEOMYCIN
knowledge base was constructed manually over a 7 year period; the first test of this system
on a representative suite of test cases was performed in conjunction with the ODYSSEUS
system. The NEOMYCIN vocabulary includes 60 diseases; our physician, Dr. John Sotos,
determined that the existing data request vocabulary of 350 manifestations only allowed
diagnosis of 10 of these diseases. Another physician, Dr. Edward Herskovits, constructed a
case library of 115 cases for these 10 diseases from actual patient cases from the Stanford
Medical Hospital, to be used for testing ODYSSEUS. The test set consisted of 112 of these

cases.

Let us begin our performance analysis by considering the baseline system performance
prior to any ODYSSEUS knowledge base refinement. The expected diagnostic performance
that would be obtained by randomly guessing diagnoses is 10%, an1 the performance ex-
pected by always choosing the most common disease is 18%. Version 2.3 of HERACLES
with the NEOMYCIN knowledge base initially diagnosed 31% of the cases correctly, which is
3.44 standard deviations better than always selecting the disease that is a priori the most
likely. On a student t-test, this is significant at a t = .001 level of significance. Thus we
can conclude that NEOMYCIN’s initial diagnostic performance is significantly better than
guessing. Version 3.1 of ProHCD, with the manually constructed NEOMYCIN knowledge
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base, gave almost identical performance results; it initially diagnosed 32 of the 112 cases
correctly (28.5% accuracy).

Table 1.2 shows the various diseases and their sample sizes in the evaluation set. The
results of each test suite are described along three dimensions. TP (true-positive) refers
to the number of cases that the expert system correctly diagnosed as present, FN (false-
negative) to the number of times a disease was not diagnosed as present but was indeed
present, and FP (false-positive) to the number of times a disease was incorrectly diagnosed
as present.

Disease Number KB1 KB2
Cases

TF | FN | FP || TP | FN | FP
Bacterial Meningitis 16 14 |2 49 14 |2 21
Brain Abscess 7 0 7 1 0 7 1
Cluster Headache 10 1 9 0 7 3 4
Fungal Meningitis 8 0 8 0 4 4 0
Migraine 10 4 6 6 1 9 0
Myco-TB Meningitis 4 0 4 2 4 0 0
Primary Brain Tumor | 16 0 16 |0 0 16 |0
Subarach Hemorrhage | 21 1 20 | O 15 | 6 0
Tension Headache 9 7 2 5 7 2 6
Viral Meningitis 11 5 6 11 10 11 12
None 0 0 0 6 0 0 6
Totals 112 32 18 |80 (62 |50 |50

Table 2. Summary of MINERVA experiments. The KBl column is the performance using the
manually constructed domain theory. KB2 shows performance after use of methods that correct an
incorrect domain theory.

7.1 Improving an Incorrect and Inconsistent Domain Theory

The first stage of improvement involves locating and modifying incorrect domain knowl-
edge tuples. Our method modified 48% of the heuristic rules in the knowledge base. The
improvement obtained using the refined knowledge base is shown in column KB2 of Ta-
ble 1.2; ProHCD diagnosed 62 cases correctly (55.3% accuracy), showing an improvement
of about 27%. The second stage of improvement involves correcting inconsistent domain
knowledge. No experimental results are reported here, although our methods have been

previously shown to lead to significant improvement (Wilkins and Ma, 1989).
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Disease Number KB3 KB4
Cases

TP | FN { FP | TP { FN | FP
Bacterial Meningitis 21 12 | 4 4 14 |2 13
Brain Abscess 7 5 2 15 1 6 0
Cluster Headache 10 7 3 4 8 2 0
Fungal Meningitis 8 3 5 0 3 5 0
Migraine 10 4 6 0 6 4 0
Myco-TB Meningitis 4 4 0 0 4 0 1
Primary Brain Tumor | 16 0 16 | 0 3 13 (0
Subarach Hemorrhage | 21 16 | 5 2 16 | 5 3
Tension Headache 9 7 2 6 8 1 3
Viral Meningitis 11 10 |1 6 10 |1 12
None 0 0 0 7 0 0 7
Totals 112 68 44 44 73 39 39

Table 3: Summary of MINERVA experiments. KB3 and KB4 show the performance after using case-
based learning and apprenticeship learning, respectively, to extend the incomplete domain theory.

7.2 Extending Incomplete Domain Theory via Case-Based Reasoning

The third stage of improvement involves extending a correct but incomplete domain knowl-
edge base. Two experiments were conducted. The first used case-based learning; all the
cases were run, and two misdiagnosed cases in areas where the knowledge base was weak
were selected. The case-based learning approach was applied to these two cases. This
refinement, shown in column KB3 of Table 1.2, enabled the system to diagnose 68 cases

correctly (60.7% accuracy), showing an aggregate improvement of 32%.

7.3 Extending Incomplete Domain Theory via Apprenticeship Learning

The second experiment used apprenticeship learning. For use as a training set, problem-
solving protocols were collected by having Dr. Sotos solve two cases, consisting of approxi-
mately 30 questions each. ODYSSEUS discovered 10 pieces of knowledge by watching these
two cases being solved; eight of these were domain rule knowledge. These eight pieces of
information were added to the NEOMYCIN knowledge base of 152 rules, along with two
pieces of frame knowledge that classified two symptoms as ‘general questions’; these are

questions that should be asked of every patient. This refinement, shown in column KB4
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of Table 1.2, enabled the system to diagnose 73 cases correctly (65.2% accuracy), an ag-
gregate improvement of about 37%. Compared to NEOMYCIN’s original performance, the
performance of NEOMYCIN after improvement by ODYSSEUS is 2.86 standard deviations
better. On a student t-test, this is significant for ¢t = .006. One would expect the improved
NEOMYCIN to perform better than the original NEOMYCIN in better than 99 out of 100

sample sets.

It is important to note that the improvement occurred despite the physician’s only
diagnosing one of the two cases correctly. The physician correctly diagnosed a cluster
headache case and misdiagnosed a bacterial meningitis case. As is evident from examining
Tables 1.1 and 1.2, the improvement was over a wide range of cases, and the accuracy
of diagnosing bacterial meningitis cases actually decreased. These counterintuitive results
confirm our hypothesis that the power of our learning method derives from following the
line of reasoning of a physician on individual findout questions and is not sensitive to the

final diagnosis as is the case in learning by empirical induction from examples.

All of this new knowledge learned by apprenticeship learning was judged by Dr. Sotos
as plausible medical knowledge, except for a domain rule linking aphasia to brain abscess.
Importantly, the new knowledge was judged by our physician to be of much higher quality
than when straight empirical induction was used to expand the knowledge base, without

the use of explanation-based learning.

More experimental work remains. Our previous experiments with ODYSSEUS suggest
that the apprenticeship learning approach is better than a case-based approach for produc-
ing a user-independent knowledge base to support multiple problem-solving goals such as

learning, teaching, problem-solving, and explanation generation.

8 Conclusions

In this chapter, we presented the three distinct methods used by ODYSSEUS to improve a

domain theory.

Our method of extending an incomplete domain theory is a form of failure-driven
explanation-based learning, which we refer to as apprenticeship learning. Apprenticeship
is the most effective means for human problem solvers to learn domain-specific problem-
solving knowledge in knowledge-intensive domains. This observation provides motivation to

give apprenticeship learning abilities to knowledge-based expert systems. The paradigmatic




20

example of an apprenticeship period is medical training, in which we have performed our

investigations.

With respect to the incomplete theory problem, the research described illustrates
how an explicit representation of the strategy knowledge for a general problem class, such
as diagnosis, provides a basis for learning the domain-level knowledge that is specific to a
particular domain, such as medicine, in an apprenticeship setting. Our approach uses a
given body of strategy knowledge that is assumed to be complete and correct with the goal
of learning domain-specific knowledge. This contrasts with learning programs such as LEX
and LP where the domain-specific knowledge (e.g., integration formulas) is completely given
at the start, and the goal of learning strategy knowledge (e.g., preconditions of operators)
(Mitchell et al., 1983). Two sources of power of the ODYSSEUS approach are the method of
completing failed explanations, called the metarule chain completion method, and the use of
a underlying domain theories to evaluate domain-knowledge changes via the confirmation
decision procedure method. Our approach complements the traditional method of empirical
induction from examples for refining a knowledge base for an expert system for heuristic
classification problems. With respect to learning certain types of heuristic rule knowledge,
empirical induction from examples plays a significant role in our work. In these cases,
an apprenticeship approach can be viewed as a new method of biasing selection of which

knowledge is learned by empirical induction.

An apprenticeship learning approach, such as described in this chapter, is perhaps
the best possible bias for automatic creation of a large ‘user-independent’ knowledge bases
for expert systems. We desire to create knowledge bases that will support the multifaceted
dimansions of expertise exhibited by some human experts, dimensions such as diagnosis,

design, teaching, learning, explanation, and critiquing the behavior of another expert.

The long-term objectives of this research are the creation of learning methods that
can harness an explicit representation of generic shell knowledge and that can lead to
the creation of a user-independent knowledge base that rests on deep underlying domain
models. Within this framework, this paper described specialized methods that address three
ma jor types of knowledge base pathologies: incorrect, inconsistent, and incomplete domain

knowledge.
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